
Black Paper

Security audit

2nd security review
Date : June 5st, 2023

1

Black Paper

Summary

I. Introduction..3
1. About Black Paper..3
2. Methodology...3

a. Preparation... 3
b. Review...3
c. Reporting...4

3. Disclaimer... 5
4. Scope...5

II. Vulnerabilities..6
CRIT-1 Permanent loss of USDT... 7
CRIT-2 Unexpected reward distribution... 8
MAJ-1 Front-running benefits...10
MED-1 Centralization risks in owner role... 12
MED-2 Denial of Service.. 13
LOW-1 Unadapted use of ERC20 standard... 14
LOW-2 Unnecessary code complexity... 15
LOW-3 Floating pragma version.. 16
INF-1 Too many digit.. 17
INF-2 MINIMUM_CONTRIBUTION_AMOUNT should be constant................................. 18
INF-3 Useless default boolean affectation... 19
INF-4 Useless boolean comparisons... 20
INF-4 Could check address validity..22
INF-5 Inconsistent comment.. 23
INF-6 Useless balance check...24
INF-7 Unnecessary code complexity..25
INF-8 Code repetition... 26
INF-9 Typo error in a comment.. 28
INF-10 tokenMNTE and tokenUSDT should be immutable..29

2

Black Paper

I. Introduction

1. About Black Paper
Black Paper has been created to help developer teams. Our goal is to help you to make your
smart contract safer.
Cybersecurity requires specific expertise which is very different from smart contract
development logic. To ensure everything is well fixed, we stay available to help you.

2. Methodology

a. Preparation
This smart contract is a staking contract for Mintera tokens.
A first technical meeting was held on 12/05/2023. It allows technical teams to explain the
contract workflow, to define the exact scope, and start the audit process.

b. Review
Before manually auditing, we pass contracts into automatic tools. This allows us to find
some easy-to-find vulnerabilities.
Afterward, we manually go deeper. Every variable and function in the scope are analyzed.

You can find many articles on the lesson website. Here is a snippet list of what we test :
● Constructor Mismatch
● Ownership Takeover
● Redundant Fallback Function
● Overflows & Underflows
● Reentrancy
● Money-Giving Bug
● Blackhole
● Unauthorized Self-Destruct
● Revert DoS
● Unchecked External Call
● Gasless Send
● Send Instead Of Transfer
● Costly Loop
● Use Of Untrusted Libraries
● Use Of Predictable Variables
● Transaction Ordering Dependence
● Deprecated Uses

3

https://www.black-paper.xyz/lessons

Black Paper

This is not an exhaustive list since we also focus on logic execution exploits, and help
optimizing gas price.

c. Reporting
Every point in the code is subject to internal discussions with the team. At this stage, a
majority of the probable issues have already been identified and documented.

Post the completion of the code review, analysis, and testing, we prepare a report which
contains for each vulnerability :

● Explanation
● Severity score
● How to fix it / Recommendation

Here are severity score definitions.

Critical A critical vulnerability is a severe issue that can cause significant damage
to the contract and its users. These vulnerabilities are easy to exploit and
can result in the loss of funds, theft of sensitive data, or other serious
consequences. Immediate attention is required to address these
vulnerabilities.

Major A major vulnerability is an issue that can cause significant problems for
the contract and its users, but not to the same extent as a critical
vulnerability. These vulnerabilities are also easy to exploit and may result
in the loss of funds or other negative consequences, but they can be
mitigated with timely action.

Medium A medium vulnerability is an issue that could potentially cause problems
for the contract and its users, but the difficulty to exploit is higher than
major or critical vulnerabilities. These vulnerabilities may pose a risk to
the contract's functionality or security, but they can be addressed without
causing significant disruption.

Low A low vulnerability is a minor issue that does not pose a significant risk to
the contract or its users. These vulnerabilities are difficult to exploit and
may be cosmetic or technical in nature, but they do not compromise the
contract's security or functionality.

Informational An informational finding is not a vulnerability but rather a suggestion or
recommendation for improvement. These findings may include best
practices for contract design, suggestions for improving code readability,
or other non-critical issues. While not urgent, addressing these findings
can help to optimize the contract's performance and reduce the risk of
future vulnerabilities.

4

Black Paper

3. Disclaimer
In this audit, we sent all vulnerabilties found by our team.We can’t guarantee all
vulnerabilities have been found.

4. Scope
The scope of the audit is one smart contract which is stored in Mintera Github as
StakingVault.sol (commit: 29b270a5dcdbabcddb96cc5faf916375c6bf90cc).

The 2nd review was done on commit 04b0f36a2ebcc25849f2f394d187b227ad95328b.

We assume that the following smart contracts don’t need to be audited :
- Context.sol
- ERC20.sol
- ERC20Burnable.sol
- IERC20.sol
- IERC20Metadata.sol
- Ownable.sol
- Pausable.sol
- ReentrancyGuard.sol
- SafeMath.sol

5

Black Paper

II. Vulnerabilities

Critical
2 critical severity issues were found :

- CRIT-1 Permanent loss of USDT
- CRIT-2 Unexpected reward distribution

Major
1 major severity issue was found :

- MAJ-1 Front-running benefits

Medium
2 medium severity issues were found :

- MED-1 Centralization risks in owner role
- MED-2 Denial of Service

Low
3 low severity issues were found :

- LOW-1 Unadapted use of ERC20 standard
- LOW-2 Unnecessary code complexity
- LOW-3 Floating pragma version

Informational
10 informational severity issues were found :

- INF-1 Too many digit
- INF-2 MINIMUM_CONTRIBUTION_AMOUNT should be constant
- INF-3 Useless default boolean affectation
- INF-4 Useless boolean comparisons
- INF-4 Could check address validity
- INF-5 Inconsistent comment
- INF-6 Useless balance check
- INF-7 Unnecessary code complexity
- INF-8 Code repetition
- INF-9 Typo error in a comment
- INF-10 tokenMNTE and tokenUSDT should be immutable

6

Black Paper

CRIT-1 Permanent loss of USDT
Impact: Critical

Description:
The reward is calculated with calculateReward function which uses lastRewardAmount
global variable.

After a deposit, the lastRewardAmount variable is updated. There is no check that all
rewards were distributed. If there are not, some USDT can be lost on the contract address
forever. Because there is no other way to send it.
Moreover, if the farmer calls the deposit function two times in a row by mistake, the first
USDT sent will be lost.

Recommendation:
There are 3 possibilities to fix this:

1. Add a check at the beginning of the deposit function that verifies all rewards were
sent.

2. Change the way the reward is calculated.
3. Add an emergency function that allows farmingAddress address to withdraw USDT

from the contract.

Status:
currentNumberOfStakersRewarded was added in order to ensure every staker was
rewarded.
The withdrawal is impossible since it is not a claiming period. To toggle claiming period, it
verifies that currentNumberOfStakersRewarded is equal to the number of stakers.
If there is no reward, or if stakingPerriod is toggled by mistake, it can be mitigated by
sending 0 USDT as a deposit and reward users.

7

Black Paper

CRIT-2 Unexpected reward distribution
Impact: Critical

Description:
The reward is calculated with calculateReward function which uses lastRewardAmount
global variable.

After a deposit, the lastRewardAmount variable is updated with _amount value.

However, _amount value is not necessarily the USDT balance of this smart contract. On
USDT smart contract, at address 0xdac17f958d2ee523a2206206994597c13d831ec7, a fee
can be taken from Tether organization. In the case fee is higher than 0, lastRewardAmount
will be higher than the smart contract balance. It can lead to unexpected reward distribution.

Recommendation:
Use tokenUSDT.balanceOf(address(this)) to update lastRewardAmount. Warning: it
may have impacts on other pieces of code.

Else, you can create a function to calculate USDT fees. You need to call the USDT contract to
get basisPointsRate and maximumFee variables.

8

Black Paper

Status:
An error was created with this change in actual smart contract:

Need to be replaced by:

Else, the fix will work.

Finally, the smart contract will be added to the Arbitrum blockchain and not on Ethereum.
Because the USDT smart contract on Arbitrum is not the same, fees are not possible in the
actual smart contract.
Nevertheless, USDT smart contract works with a proxy, so it is not immutable.

Update 5/06 : It was fixed.

9

Black Paper

MAJ-1 Front-running benefits
Impact: Major

Description:
farmingAddress address is allowed to deposit only before the claiming period. There is no
advantage to stake before a long before claiming period.

A malicious actor could start staking just before the toggleClaimPeriod function call by
the owner with a very big percentage of MNTE staked. In that way, he will be able to win as
much USDT from staking reward as a user who is staking for a longer period.

Recommendation:
To avoid this point of vulnerability, the best solution should be to calculate reward for each
user when deposit depending on stake timestamp. This involves important changes in the
smart contract workflow.

An easy fix could be to replace isClaimPeriod bool and use an Enum type with 3 values:

A waiting time between staking and claiming could reduce front-run impact.

Then an additional modifier and function need to be coded:
- a modifier to check whether an external call is authorize depending on Periods
- a function to allow owner to change period

This fix does not completely resolve fair reward distribution. We highly encourage to
calculate rewards depending on timestamp (or block number).

Status:
Those 3 periods were added.
The logic was changed, allowing users to withdraw in the second claiming period after they
stack.
A new issue appears when a user withdraw. He can’t claim the last reward he should have
one month after he unstaked because he was rejected from stakerAddressList. Moreover,
it leads to USDT lost on the contract. Here are 2 solutions:

10

Black Paper

1/ Make some changes in the code that will increase complexity:
- adding a trigger on stakers who decided to _unstake.
- realize _unstake operations after their yieldRewardAmount was updated.

2/ Accept that users can’t claim the last month. Then :
- add a new variable rewardOverflow that saves last month’s rewards.
- create a function that allows farmer to withdraw those rewards

Even if this is an unwanted behavior, we strongly advise to solve this issue with the second
point. A v2 would be better to don’t add too much complexity on the contract design.
It was fixed in the last update, allowing the farmer to withdraw overflow USDT.

Update 5/06 : The second solution was implemented.

11

Black Paper

MED-1 Centralization risks in owner role
Impact: Medium

Description:
The owner role can be assigned to a single externally owned account (EOA). It can lead to
centralization and an increased risk of private key leaks.

Recommendation:
To mitigate this risk, we recommend using a multisignature wallet that is jointly owned by
multiple individuals. This would distribute control and reduce the likelihood of a single point
of failure.

Status:
A multisig wallet will be used on mainnet deployment.

12

Black Paper

MED-2 Denial of Service
Impact: Medium

Description:
In the reward calculation, stakedAmount and lastRewardAmount are multiplicated before
being divided.

If an overflow happens, it can lead to a DoS on calculateReward function and so on
distribute function.

While MNTE can’t be minted and maximum supply is 65e24, the probability is not null: USDT
can be minted without any limits. However, today’s USDT total supply is
36283188702721368.

Recommendation:
Add an emergency function that allows farmingAddress address to withdraw USDT from
the contract. In that way, if it happens, no USDT will be lost.

Status:
Seeing the MNTE and USDT maximum supply, it is now impossible. The Mintera team
assumes that USDT supply will not change in this magnitude, which is understandable.

13

Black Paper

LOW-1 Unadapted use of ERC20 standard
Impact: Low

Description:
To send MNTE tokens from the contract itself, transferFrom function is used. It adds
complexity and gas without advantages of a traditional transfer.

Recommendation:
Replace the lines above by:

If this fix is not done, then the boolean returned by approve should be check with the
following line:

Status:
The fix is implemented, following recommendations.

14

Black Paper

LOW-2 Unnecessary code complexity
Impact: Low

Description:
address(0) is added to stakerAddressList in the constructor. It was done to bypass an if
statement for the first staker line 122.

However, it is not a good idea because :
1/ it is misunderstanding for an external user
2/ if an undetected issue leads to remove a null address from the list, it becomes critical
3/ numberOfStakers function is then false
4/ following require is always True then, which is not desired

Recommendation:
There are other ways to bypass the if statement line 122 :

It can be done by checking stakedAmount or lastStakeTimestamp.

Then, we recommend removing the push of address(0) in the constructor.

Status:
The fix is implemented, following recommendations.

15

Black Paper

LOW-3 Floating pragma version
Impact: Low

Description:
The version of Solidity is not fixed. Consider locking the version pragma to the same Solidity
version used during development and testing. Also consider setting this version to be the
latest release.

Recommendation:
It is always recommended that pragma should be fixed to the version that you are intending
to deploy your contracts with. Replace the floating pragma version (line 2) by:

Status:
The fix is implemented, following recommendations.

16

Black Paper

INF-1 Too many digit
Impact: Informational

Description:
MINIMUM_CONTRIBUTION_AMOUNT is hard to read because of too many digits. It's easy to
misread the number of zeros in big numbers.

Recommendation:
We recommend using scientific notation.

Status:
The fix is implemented, following recommendations.

17

Black Paper

INF-2 MINIMUM_CONTRIBUTION_AMOUNT should be constant
Impact: Informational

Description:
MINIMUM_CONTRIBUTION_AMOUNT variable can’t be modified. It should be constant. In
addition optimizing gas, the naming convention will be respected.

Recommendation:
We recommend using the constant keyword.

Status:
The fix is implemented, following recommendations.

18

Black Paper

INF-3 Useless default boolean affectation
Impact: Informational

Description:
isClaimPeriod variable is a bool. All boolean variables have a false default value. There is
no need to set it to false in the constructor.

Recommendation:
Delete the code above (lines 95-96).
You can also write a comment next to isClaimPeriod variable declaration.

Status:
This part has been fixed with MAJ-1 changes.

19

Black Paper

INF-4 Useless boolean comparisons
Impact: Informational

Description:
Booleans should not be compared to False or True. It is gas consuming and adds
complexity.

Recommendation:
Here are the lines that can be modified:

● Lines 110-113:

should be replaced by:

● Lines 180-183:

should be replaced by:

20

Black Paper

● Lines 200-203:

should be replaced by:

● Lines 259-262:

should be replaced by:

Status:
This part has been fixed with MAJ-1 changes.

21

Black Paper

INF-4 Could check address validity
Impact: Informational

Description:
In the transferFarming function, _newFarmer variable is not checked. Impact is very low
since the owner can modify farmingAddress again.

Recommendation:
Add the require as the following code:

The same logic can be implemented in the constructor farmingAddress check.

Status:
The fix is implemented, following recommendations.

22

Black Paper

INF-5 Inconsistent comment
Impact: Informational

Description:
In the following lines, the comments are not relevant.

Recommendation:
Remove those comments. A comment line could be added at the beginning of the function
to warn users to give allowance first.

Status:
The fix is implemented, following recommendations.

23

Black Paper

INF-6 Useless balance check
Impact: Informational

Description:
There is no need to check the balance of the sender. It is done when calling transferFrom
ERC20 function.

Recommendation:
We recommend removing line 109 to save gas and increase readability.

Status:
The fix is implemented, following recommendations.

24

Black Paper

INF-7 Unnecessary code complexity
Impact: Informational

Description:
In the calculateReward function, there is no utility to check if stakedAmount > 0. At the
end, if stakedAmount == 0, the function will return 0.

Recommendation:
We recommend removing this check in order to win a lot of readability, and save some gas.

Status:
The logic has changed with MAJ-1 modifications.

25

Black Paper

INF-8 Code repetition
Impact: Informational

Description:
In the stake function, code can be simplified. Some lines are redundant. There is no need to
separate cases when it is a new staker or not:

- to increase stakedAmount
- to update lastStakeTimestamp

Recommendation:
We recommend replacing code by those lines in order to win readability and save gas.

26

Black Paper

Status:
The fix is implemented, with a difference caused by the new firstStakeTimestamp

variable.

27

Black Paper

INF-9 Typo error in a comment
Impact: Informational

Description:
There is a small typo in a comment.

Recommendation:
It can easily be fixed.

Status:
The fix is implemented, following recommendations.

28

Black Paper

INF-10 tokenMNTE and tokenUSDT should be immutable
Impact: Informational

Description:
tokenMNTE and tokenUSDT variables can’t be modified after deployment. It should be
immutable to optimize gas.

Recommendation:
We recommend using the immutable keyword.

Status:
The fix is implemented, following recommendations.

29

